УДК 677.014/017.42

Инструментальная система контроля разрывных характеристик льняного волокна

Е. Л. Пашин^{1а}, А. В. Орлов²

¹ Костромская государственная сельскохозяйственная академия, Российская Федерация ² Костромской государственный университет, Российская Федерация ^aE-mail: evgpashin@yandex.ru

Аннотация. Для проведения испытаний льняных волокон при растяжении, сходном с условиями, имеющими место при их переработке, предложена инструментальная система контроля с применением копра. Разработан метод определения разрывного усилия образца волокна при высокоскоростном растяжении, заключающийся в контроле времени и угловой координаты перемещения маятника копра. Это обеспечило возможность расчета углового ускорения, а по его величине — усилия натяжения при разрыве. Создана инструментальная система контроля разрывного усилия льняного волокна, включающая модули для механического испытания и расчета величины разрывного усилия.

Ключевые слова: волокно, лен, разрывное усилие, испытание, скоростное растяжение.

Instrumental Control System of Discontinuous Characteristics of Flax Fiber

E. Pashin^{1a}, A. Orlov ²

¹Kostroma State Agricultural Academy, Russian Federation

²Kostroma State University, Russian Federation

^aE-mail: evgpashin@yandex.ru

Annotation. For flax fibers testing under tension similar to the conditions that take place during their processing, an instrumental control system with the use of tensile strength tester is proposed. A method for determining the breaking force of the fiber sample at high-speed tension, which consists of controlling the time and angular coordinate of the pendulum of tensile strength tester, is created. This enables to calculate the angular acceleration, and its magnitude – the tensile force at break. An instrument system for monitoring the breaking force of flax fiber, including modules for mechanical testing and calculation of the breaking force is developed.

Key words: fiber, flax, breaking force, test, high-speed stretching.

Для эффективного контроля параметров качества льняного волокна (длинного трёпаного или короткого неориентированного) требуется определение его разрывных характеристик, обеспечивающих прогнозирование условий разрушения волокон при разрыве, возникающих при его переработке [1, 2]. Однако ГОСТ 10330-76 существующие методы по ГОСТ 9394-76 не обеспечивают соответствия скоростных параметров испытаний реальным, имеющим место на перерабатывающих предприятиях. Характерные скорости деформирования текстильных волокон и нитей при переработке составляют более 3 м/с, а при испытании по стандартным методам - не более 0,02 м/с [3]. Такое несоответствие приводит к ошибочному выбору рациональных режимов обработки льноволокон по результатам лабораторного анализа.

Поэтому выявлена необходимость использования высокоскоростных нагружений волокна при определении его разрывных характеристик. На начальных

этапах была поставлена задача по определению в указанных условиях разрывной нагрузки волокна.

В результате поиска аналогов технических средств для подобных испытаний было обращено внимание, что первые работы по изучению особенностей высокоскоростных испытаний текстильных материалов проводились с применением копров (Великобритания, Германия) [4]. В нашей стране приоритетные изыскания связаны с И. В. Крагельским. Указанные исследователи предложили конструкции устройств для высокоскоростного нагружения при скоростях деформирования образца до 4...7 м/с [5]. Например, представленный на рисунке 1 копер Гудбрандта обеспечивал скоростной разрыв волокон, изначально закрепленных в зажимах. Преимущества такого испытания очевидны: простота конструкции, отсутствие электропривода и обеспечение различной скорости нагружения в зависимости от начального угла наклона маятника.

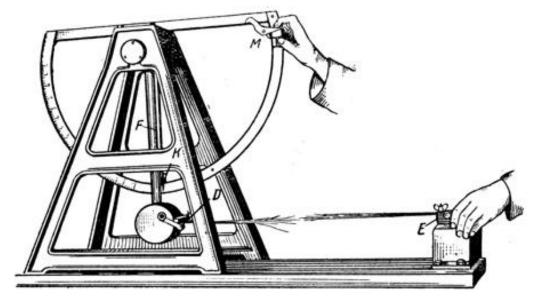


Рисунок 1 – Схема испытания волокна с использованием копра Гудбрандта [5, с. 242]

Однако рассмотренные системы испытаний имели один недостаток. Они обеспечивали возможность учета только работы разрыва волокон, определяемой при прочих равных условиях конструкции, по разности углов отклонения оси маятника от вертикали. С целью устранения этого недостатка был предложен новый вариант контроля величины разрывного усилия.

Основой нового предложения являлось использо-

вание общеизвестного уравнения динамики для вращательного движения твердого тела [6]. Согласно ему, произведение момента инерции тела J_y на его угловое ускорение ε равно сумме моментов всех сил $\sum M_i$ относительно оси вращения. К числу формирующихся моментов при предлагаемой схеме испытания относим: момент от действия силы натяжения испытываемого образца $M_{PA3}=R_{PA3}\cdot L_{PA3}$, момент от суммарного действия сил сопротивления перемещению маятника M_C (без учёта R_{PA3}), момент от действия силы тяжести $M_G=mg\cdot L_{\mathcal{U},T}\cdot\sin \varphi\cdot \mathbf{B}$ указанных выражениях R_{PA3} — разрывное усилие; L_{PA3} — расстояние от оси вращения маятника до зажима на нём волокна; mg — сила тяжести; φ — угол отклоне-

Применив упомянутое уравнение динамики, в период разрыва образца возможно определение R_{PA3} с использованием выражения:

ния маятника; $L_{\!\scriptscriptstyle U.T.}$ – расстояние от центра тяжести

маятника до оси его вращения.

$$R_{PA3} = \frac{J_{y}\varepsilon - M_{C} - mg \cdot L_{II.T.} \cdot \sin \varphi}{L_{PA3}}.$$
 (1)

Величину момента инерции маятника J_y предложено определять с использованием метода малых колебаний [6].

Нашим инновационным решением является определение углового ускорения ε , реализованное следующим образом. К оси маятника закрепляется высокоточный датчик угла её поворота (разрешение 10000 имп/об). В ходе его работы происходит контроль времени посредством ЭВМ. Так формируется зависимость изменения во времени угловой координаты. Далее методом численного дифференцирования вначале рассчитывается угловая скорость маятника, а затем — требуемое ускорение ε . Таким образом, была решена задача контроля разрывного усилия R_{PA3} на протяжении всего процесса разрыва образца.

На данной основе были разработаны алгоритм расчетов и реализующая его программа для ЭВМ, которые использовали при получении значений разрывного усилия по результатам испытания по предложенному инструментальному методу. В итоге была создана инструментальная система контроля, включающая модуль для разрыва волокна и модуль обработки результатов испытания (рис. 2).

После всесторонней проверки инструментальная система была рекомендована для испытания на разрыв трепаного льняного и короткого волокна, соответственно, при межзажимном расстоянии 0,1 и 0,07 м. При испытании короткого волокна предусмотрена возможность скручивания волокнистых проб перед их разрывом с учётом требований ГОСТ 9394-76.

Последовательность операций при проведении анализов следующая. Маятник определённой массы устанавливают в исходное вертикальное положение. Подготовленные по массе и длине пробы волокон закрепляют в зажимах. После этого маятник отклоняют на угол φ и фиксируют в этом положении. Далее включают программу ЭВМ и освобождают маятник от фиксации. В результате перемещения маятника происходит разрыв волокнистой пробы, а на мониторе ЭВМ фиксируется значение R_{PA3} . Согласно ГОСТ 10330-76 и ГОСТ 9394-76 предусмотрена по-

МАТЕРИАЛОВЕДЕНИЕ

вторность испытания, а также расчет среднего арифметического и коэффициента вариации.

выводы

- 1. При испытании льняного волокна требуется определение его разрывной нагрузки в условиях нагружения, сходных с таковыми при их переработке по характеру натяжения волокон и полуфабрикатов. Поэтому здесь также необходимы режимы высокоскоростного растяжения. Разрывные машины для стандартных испытаний волокон и нитей не обеспечивают такой возможности.
- 2. Для высокоскоростного растяжения целесообразно использовать технические решения, основанные на применении копров с обеспечением возможности определения разрывных характеристик волокон.
- 3. Создана инструментальная система контроля разрывного усилия льняного волокна, особенностью которой является контроль времени и угловой координаты перемещения маятника копра для расчёта углового ускорения, а по его величине усилия натяжения образца в процессе испытания.

Рисунок 2 – Опытный образец инструментальной системы контроля разрывного усилия льняного волокна

СПИСОК ЛИТЕРАТУРЫ

- 1. Прядение льна: учебник / И. Ф. Смельская [и др.]. Кострома: КГТУ, 2007. 544 с.
- 2. Банакова, Н. В. Анализ параметров технологических процессов приготовительного, ткацкого и трикотажного производств по тензограммам нити / Н. В. Банакова, В. Р. Крутикова // Известия вузов. Технология текстильной промышленности. 2015. № 5 (359). С. 100–105.
- 3. Кудряшова, Н. И. Высокоскоростное растяжение текстильных материалов / Н. И. Кудряшова, Б. А. Кудряшов. М. : Легкая индустрия», 1974. 267 с.
- 4. Крагельский, И. В. Динамическое определение прочности текстильных материалов / И. В. Крагельский. М.: Гизлегпром, 1933. 51 с.
- 5. Крагельский, И. В. Физические свойства лубяного сырья / И. В. Крагельский. М. : Гос. издат легкой пром-сти, 1939.-470 с.
- 6. Тарг, С. М. Краткий курс теоретической механики : учеб. для втузов / С. М. Тарг. 10-е изд., перераб. и доп. М. : Высш. шк., 1986. 416 с.

REFERENCES

- 1. Spinning flax: textbook / I. Smelskaya [et al.]. Kostroma: KSTU, 2007. 544 p.
- 2. Banakova, N. V. Analysis of the parameters of technological processes of preparatory, weaving and knitwear production according to tensograms of thread / N. V. Banakova, V. R. Krutikova // Izvestiya Vuzov. Technology textile industry. -2015. $-\frac{N}{2}$ 5 (359). -P. 100–105.
- 3. Kudryashova, N. I. High-speed stretching of textile materials / N. I. Kudryashova, B. A. Kudryashov. M. : Light Industry, 1974. 267 p.
- 4. Kragelsky, I. V. Dynamic determination of the strength of textile materials / I. V. Kragelsky. M. : Gizlegprom, 1933. 51 p.
- 5. Kragelsky, I. V. Physical properties of bast raw material / I. V. Kragelsky. M. : State. izdat light prom-sti, 1939. 470 p.
- 6. Targ, S. M. Short course of theoretical mechanics: studies. for technical colleges / S. M. Targ. -10th ed., pererab. and add. -M.: Higher. school., 1986. -416 p.

SPISOK LITERATURY

- 1. Prjadenie l'na: uchebnik / I. F. Smel'skaja [i dr.]. Kostroma: KGTU, 2007. 544 s.
- 2. Banakova, N. V. Analiz parametrov tehnologicheskih processov prigotovitel'nogo, tkackogo i trikotazhnogo proizvodstv po tenzogrammam niti / N. V. Banakova, V. R. Krutikova // Izvestija vuzov. Tehnologija tekstil'noj promyshlennosti. − 2015. − № 5 (359). − S. 100−105.
- 3. Kudrjashova, N. I. Vysokoskorostnoe rastjazhenie tekstil'nyh materialov / N. I. Kudrjashova, B. A. Kudrjashov. M.: Legkaja industrija, 1974. 267 s.
- 4. Kragel'skij, I. V. Dinamicheskoe opredelenie prochnosti tekstil'nyh materialov / I. V. Kragel'skij. M. : Gizlegprom, 1933. 51 s.
- 5. Kragel'skij, I. V. Fizicheskie svojstva lubjanogo syr'ja / I. V. Kragel'skij. M. : Gos. izdat legkoj prom-sti, 1939. 470 s.
- 6. Targ, S. M. Kratkij kurs teoreticheskoj mehaniki: ucheb. dlja vtuzov / S. M. Targ. 10–e izd., pererab. i dop. M.: Vyssh. shk., 1986. 416 s.

Статья поступила в редакцию 9.11.2017